Skip to main content

Photoelectrocatalytic Electrochemical Cell Ordinary Cell 150ml 220ml


 


The photoelectrochemical cell is suitable for supporting equipment with horizontal and horizontal illumination of the light source. The three electrodes are on the upper part,and the working electrode should be as close as possible to the side of the light window.A vertical electrode clamp or a horizontal electrode clamp can be used to clamp the material for testing,so that the optical instrument can detect the working electrode from the side quartz light window.

The ordinary photoelectrochemical cell is the most basic optical reactor.The upper end is directly inserted into the three electrodes,and the working electrode is placed near the light window.

characteristic:

1.The main body of the electrolytic cell is customized with high borosilicate glass.This cell is equipped with JGS2 quartz plate, the size of the quartz plate is φ29*3mm. The spectral application range of JGS2 optical quartz glass is 220-2500nm.

2.The reference electrode can be purchased separately:Ag/AgCl electrode,Ag/Ag+ electrode, calomel electrode,Hg/Hg2SO4 electrode,Hg/HgO electrode,etc.

3.The counter electrode can be purchased separately:platinum wire electrode,platinum sheet electrode,graphite electrode,etc.

4.The working electrode can be purchased separately:L-shaped glassy carbon electrode,PTFE replaceable electrode holder,glassy carbon replaceable electrode holder,etc.

5.The electrochemical cell can be quickly assembled and disassembled for easy cleaning.

6.The effective diameter of the light window is 24mm.

7.Volume: 50ml,100ml,150ml,200ml



Check the details from this link: >>  Photoelectrocatalytic electrochemical cell ordinary cell 150ml 220ml - Dekresearch

Comments

Popular posts from this blog

What is the CO2RR Gas Diffusion Flow Cell?

The CO2RR Gas Diffusion Flow Cell (CO2RR GDFC) is a type of electrochemical cell used in the conversion of carbon dioxide (CO2) to other chemicals through a process called the CO2 reduction reaction (CO2RR). It is similar in design to the Gas Diffusion Flow Cell (GDFC) used to measure gas permeability, but it is specifically designed to facilitate the electrochemical reduction of CO2. The CO2RR GDFC consists of a small, sealed chamber with two compartments separated by a thin, gas-permeable membrane. One compartment is filled with a CO2-containing gas mixture, while the other compartment contains an electrolyte solution and a catalyst material, such as copper or silver, which facilitates the CO2RR. The two compartments are separated by the gas-permeable membrane, which allows CO2 to diffuse from the high concentration compartment to the low concentration compartment. The CO2RR is driven by an electric potential applied across the two compartments, which induces the reduction of CO2 int

In-Situ Raman Spectroscopy Electrochemical Cell

  In-situ Raman spectroscopy electrochemical cell is designed and manufactured for studying the in-situ spectra and morphology changes of electrode materials in electrochemical experiments. The working electrode is placed directly under the see-through window, so that the optical instrument can detect the working electrode from the quartz light window above the cell body. Commonly used instruments include optical microscopes, infrared microscopes, X-ray spectrometers, confocal Raman spectrometers, etc. According to different experimental test requirements, the in-situ Raman spectroscopy electrochemical cell is divided into four types: Single cell body with single light window type Single cell body with double light window type H type double cell body with single side light window type H type double cell body with double side light window type The single cell body with single light window type is the most widely used in-situ Raman characterization cell in DekResearch. It can be applied

What is the Gas Diffusion Layer (GDL)?

      The GDL is a porous structure made by weaving carbon fibers into a carbon cloth (e.g. GDL-CT and ELAT) or by pressing carbon fibers together into a carbon paper.  Many of the standard GDLs that are produced today come with a Micro Porous layer (MPL) and hydrophobic treatment (PTFE).  The MPL and PTFE help with the contact to the membrane and with water management.  The MPL typically provides a smooth layer with plenty of surface area for catalyst and good contact with the membrane.  The MPL often uses PTFE as a binder that increases hydrophobicity, which helps keep the water within the membrane from escaping – drying out the membrane and causing higher resistance (lower performance).  There is often an additional PTFE coating on the MPL surface to further augment this. What Exactly Does a Gas Diffusion Layer (GDL) Do? GDL essentially acts as an electrode that facilitates diffusion of reactants across the catalyst layered membrane. The surface area and porosity of the GDL is what