Skip to main content

How to do when the mercury oxide reference electrode broken?

Q: How to do when the mercury oxide reference electrode broken?

A:  If the electrode is broken, please be sure to operate in accordance with the laboratory hazardous chemical treatment method to avoid the diffusion of mercury oxide, which is a toxic material.

Description of the mercury oxide reference electrode:

The mercury-mercury oxide(Hg/HgO) reference electrode is mainly used in alkaline solutions. It is an electrode composed of metallic mercury and its insoluble salt HgO and 1M KOH solution. Its electrode potential is 0.098V (25°C). The salt bridge of the Hg/HgO reference electrode is made of glass and PTFE, and the size is φ6*70mm. This size can be matched with various types of Dek Research electrochemical cells.

Special attention should be paid to maintenance and storage when using the Hg/HgO reference electrode. The substance containing mercury oxide is a toxic substance, and the salt bridge solution is corrosive. Please strictly abide by the relevant laboratory safety regulations for operation. The mercury oxide electrode made of glass is generally suitable for the weak alkaline electrolyte solution system. When the solution concentration is too high, it needs to be used with a long salt bridge. 1M KOH solution is also added to the salt bridge to prevent the strong corrosive electrolyte solution from corroding the glass and causing damage to the electrode.At the same time, the Hg/HgO reference electrode made of PTFE can also be used in the 3M or 6M strong alkali system, and the user can freely change the concentration of the filling liquid in the reference electrode according to yours needs, for example, 6M NaOH or 6M KOH , Instead of 1M KOH.


Popular posts from this blog

What is the CO2RR Gas Diffusion Flow Cell?

The CO2RR Gas Diffusion Flow Cell (CO2RR GDFC) is a type of electrochemical cell used in the conversion of carbon dioxide (CO2) to other chemicals through a process called the CO2 reduction reaction (CO2RR). It is similar in design to the Gas Diffusion Flow Cell (GDFC) used to measure gas permeability, but it is specifically designed to facilitate the electrochemical reduction of CO2. The CO2RR GDFC consists of a small, sealed chamber with two compartments separated by a thin, gas-permeable membrane. One compartment is filled with a CO2-containing gas mixture, while the other compartment contains an electrolyte solution and a catalyst material, such as copper or silver, which facilitates the CO2RR. The two compartments are separated by the gas-permeable membrane, which allows CO2 to diffuse from the high concentration compartment to the low concentration compartment. The CO2RR is driven by an electric potential applied across the two compartments, which induces the reduction of CO2 int

What is the Gas Diffusion Layer (GDL)?

      The GDL is a porous structure made by weaving carbon fibers into a carbon cloth (e.g. GDL-CT and ELAT) or by pressing carbon fibers together into a carbon paper.  Many of the standard GDLs that are produced today come with a Micro Porous layer (MPL) and hydrophobic treatment (PTFE).  The MPL and PTFE help with the contact to the membrane and with water management.  The MPL typically provides a smooth layer with plenty of surface area for catalyst and good contact with the membrane.  The MPL often uses PTFE as a binder that increases hydrophobicity, which helps keep the water within the membrane from escaping – drying out the membrane and causing higher resistance (lower performance).  There is often an additional PTFE coating on the MPL surface to further augment this. What Exactly Does a Gas Diffusion Layer (GDL) Do? GDL essentially acts as an electrode that facilitates diffusion of reactants across the catalyst layered membrane. The surface area and porosity of the GDL is what

In-Situ Raman Spectroscopy Electrochemical Cell

  In-situ Raman spectroscopy electrochemical cell is designed and manufactured for studying the in-situ spectra and morphology changes of electrode materials in electrochemical experiments. The working electrode is placed directly under the see-through window, so that the optical instrument can detect the working electrode from the quartz light window above the cell body. Commonly used instruments include optical microscopes, infrared microscopes, X-ray spectrometers, confocal Raman spectrometers, etc. According to different experimental test requirements, the in-situ Raman spectroscopy electrochemical cell is divided into four types: Single cell body with single light window type Single cell body with double light window type H type double cell body with single side light window type H type double cell body with double side light window type The single cell body with single light window type is the most widely used in-situ Raman characterization cell in DekResearch. It can be applied