Skip to main content

Glassy Carbon Electrode T-type PTFE Rod

 Glassy carbon electrode is one of the most widely used working electrodes, and it is a better inert electrode. 



Glassy carbon electrode has many advantages such as good conductivity, high hardness, high finish, high hydrogen overpotential, and wide polarization range. 

  

Its chemical properties are very stable, and it can be used as an inert electrode for direct anodic dissolution testing, and voltammetric determination of cathodes and variable valence ions. Using glassy carbon electrodes as the substrate, chemically modified electrodes can also be prepared.


                     






There are four types of insulating rods for glassy carbon electrode jackets.Glassy carbon electrodes are divided into straight type, L type, T type and detachable type. The straight glassy carbon electrode material faces vertically downwards, and the research material is coated on the glassy carbon material surface for testing. The reference electrode is matched with a curved luggin capillary salt bridge close to the material surface of the glassy carbon electrode, which can effectively reduce the R drop and improve the test effect.


Application note:
The disk electrode is immersed in the ion-conducting solution as a working electrode. An electric current is passed between the working electrode and the counter electrode for a certain amount of time. After the experiment, the electrode should be washed several times with ethanol. If the disk electrode was used as a current collector with other electrode material, or when there are visible traces of material absorption, it should be polished down to the mirror surface after the experiment is completed. Store the working disk electrode in the glass tube sealed with an O-Ring (all included in the package). An instruction on maintenance is provided in Electrode Polishing Kit product page.


https://www.dekresearch.com/glassy-carbon-electrode-t-type-ptfe-rod-%CF%865mm-2911.html

Comments

Popular posts from this blog

What is the CO2RR Gas Diffusion Flow Cell?

The CO2RR Gas Diffusion Flow Cell (CO2RR GDFC) is a type of electrochemical cell used in the conversion of carbon dioxide (CO2) to other chemicals through a process called the CO2 reduction reaction (CO2RR). It is similar in design to the Gas Diffusion Flow Cell (GDFC) used to measure gas permeability, but it is specifically designed to facilitate the electrochemical reduction of CO2. The CO2RR GDFC consists of a small, sealed chamber with two compartments separated by a thin, gas-permeable membrane. One compartment is filled with a CO2-containing gas mixture, while the other compartment contains an electrolyte solution and a catalyst material, such as copper or silver, which facilitates the CO2RR. The two compartments are separated by the gas-permeable membrane, which allows CO2 to diffuse from the high concentration compartment to the low concentration compartment. The CO2RR is driven by an electric potential applied across the two compartments, which induces the reduction of CO2 int...

H-Type In-Situ Raman Spectroscopy Cell With Double Light Window 30ml

  In-situ Raman spectroscopy electrochemical cell is designed and manufactured for studying the in-situ spectra and morphology changes of electrode materials in electrochemical experiments. The working electrode is placed directly under the see-through window, so that the optical instrument can detect the working electrode from the quartz light window above the cell body. Commonly used instruments include optical microscopes, infrared microscopes, X-ray spectrometers, confocal Raman spectrometers, etc. According to different experimental test requirements, the in-situ Raman spectroscopy electrochemical cell is divided into four types: Single cell body with single light window type Single cell body with double light window type H type double cell body with single side light window type H type double cell body with double side light window type H-type double cell body with double-side light window type is an in-situ Raman characterization cell in which the working electrode and the c...

In Situ Raman Electrochemical Cell

In Situ Raman Electrochemical Cell is a specialized setup used in Raman spectroscopy to study chemical reactions and processes that occur at electrode surfaces under electrochemical conditions. Raman spectroscopy is a technique used to analyze the vibrational modes of molecules, providing information about molecular structure, composition, and interactions.   In an in situ Raman electrochemical cell, the setup integrates a Raman spectrometer with an electrochemical cell, allowing researchers to monitor changes in molecular composition and structure in real-time as electrochemical reactions take place at the electrode surface. This setup enables detailed insights into the mechanisms of electrochemical reactions, the formation of reaction intermediates, and the behavior of catalysts or electrode materials under working conditions. Key components of an in situ Raman electrochemical cell typically include: Electrochemical cell: This includes electrodes (working electrode, reference ele...