In Situ Raman Electrochemical Cell is a specialized setup used in Raman spectroscopy to study chemical reactions and processes that occur at electrode surfaces under electrochemical conditions. Raman spectroscopy is a technique used to analyze the vibrational modes of molecules, providing information about molecular structure, composition, and interactions. In an in situ Raman electrochemical cell, the setup integrates a Raman spectrometer with an electrochemical cell, allowing researchers to monitor changes in molecular composition and structure in real-time as electrochemical reactions take place at the electrode surface. This setup enables detailed insights into the mechanisms of electrochemical reactions, the formation of reaction intermediates, and the behavior of catalysts or electrode materials under working conditions. Key components of an in situ Raman electrochemical cell typically include: Electrochemical cell: This includes electrodes (working electrode, reference electro
According to the test requirements, you can use the following content as a reference for selecting reference electrode. Different research systems can choose different reference electrodes: Neutral system: saturated calomel electrode or Ag/AgCl reference electrode Alkaline system: Hg/HgO reference electrode Acidic system: Hg/Hg2SO4 reference electrode Non-aqueous system: Non aqueous Ag+ reference electrode Compared with other reference electrodes, Ag/AgCl reference electrode is more sensitive to light.At the same time, the silver chloride electrode is also less affected by temperature than other types of reference electrode. If you choose calomel electrode, Hg2/HgSO4 electrode or Hg/HgO electrode, you can add a salt bridge under the electrode to protect the reference electrode and minimize the potential affected by temperature. Mercury Oxide Reference Electrode Hg/HgO PTFE Rod 6 * 60 mm is a good choice for the Alkaline system. you can find all the reference electrodes from here: htt